For applications that require processing large amounts of text at inference time, Large Language Models (LLMs) are handicapped by their limited context windows, which are typically 2048 tokens. In-context learning, an emergent phenomenon in LLMs in sizes above a certain parameter threshold, constitutes one significant example because it can only leverage training examples that fit into the context window. Existing efforts to address the context window limitation involve training specialized architectures, which tend to be smaller than the sizes in which in-context learning manifests due to the memory footprint of processing long texts. We present Parallel Context Windows (PCW), a method that alleviates the context window restriction for any off-the-shelf LLM without further training. The key to the approach is to carve a long context into chunks (``windows'') that fit within the architecture, restrict the attention mechanism to apply only within each window, and re-use the positional embeddings among the windows. We test the PCW approach on in-context learning with models that range in size between 750 million and 178 billion parameters, and show substantial improvements for tasks with diverse input and output spaces. Our results motivate further investigation of Parallel Context Windows as a method for applying off-the-shelf LLMs in other settings that require long text sequences.
translated by 谷歌翻译
Models trained from real-world data tend to imitate and amplify social biases. Although there are many methods suggested to mitigate biases, they require a preliminary information on the types of biases that should be mitigated (e.g., gender or racial bias) and the social groups associated with each data sample. In this work, we propose a debiasing method that operates without any prior knowledge of the demographics in the dataset, detecting biased examples based on an auxiliary model that predicts the main model's success and down-weights them during the training process. Results on racial and gender bias demonstrate that it is possible to mitigate social biases without having to use a costly demographic annotation process.
translated by 谷歌翻译
Dual encoders are now the dominant architecture for dense retrieval. Yet, we have little understanding of how they represent text, and why this leads to good performance. In this work, we shed light on this question via distributions over the vocabulary. We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space. We show that the resulting distributions over vocabulary tokens are intuitive and contain rich semantic information. We find that this view can explain some of the failure cases of dense retrievers. For example, the inability of models to handle tail entities can be explained via a tendency of the token distributions to forget some of the tokens of those entities. We leverage this insight and propose a simple way to enrich query and passage representations with lexical information at inference time, and show that this significantly improves performance compared to the original model in out-of-domain settings.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
The field of emergent communication aims to understand the characteristics of communication as it emerges from artificial agents solving tasks that require information exchange. Communication with discrete messages is considered a desired characteristic, for both scientific and applied reasons. However, training a multi-agent system with discrete communication is not straightforward, requiring either reinforcement learning algorithms or relaxing the discreteness requirement via a continuous approximation such as the Gumbel-softmax. Both these solutions result in poor performance compared to fully continuous communication. In this work, we propose an alternative approach to achieve discrete communication -- quantization of communicated messages. Using message quantization allows us to train the model end-to-end, achieving superior performance in multiple setups. Moreover, quantization is a natural framework that runs the gamut from continuous to discrete communication. Thus, it sets the ground for a broader view of multi-agent communication in the deep learning era.
translated by 谷歌翻译
大量培训数据是最先进的NLP模型高性能的主要原因之一。但是,在培训数据中,什么导致模型做出一定的预测?我们试图通过提供一种通过因果框架来描述培训数据如何影响预测的语言来回答这个问题。重要的是,我们的框架绕过了重新培训昂贵模型的需求,并使我们能够仅基于观察数据来估计因果效应。解决从验证的语言模型(PLM)中提取事实知识的问题,我们重点介绍了简单的数据统计数据,例如共发生计数,并表明这些统计数据确实会影响PLM的预测,这表明此类模型依赖于浅启发式方法。我们的因果框架和结果表明,研究数据集的重要性以及因果关系对理解NLP模型的好处。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
尽管许多研究表明,语言信息是在隐藏的单词表示中编码的,但很少有人研究了单个神经元,以表明其编码的神经元是如何和哪个神经元。其中,常见的方法是使用外部探针根据其与某些语言属性的相关性对神经元进行排名,并使用产生的相同探针评估所获得的排名。我们在这种方法中显示了两个陷阱:1。它混淆了不同的因素:探针质量和排名质量。我们将它们分开,并得出每个结论。2.它专注于编码的信息,而不是模型使用的信息。我们表明这些不一样。我们比较了两种最新的排名方法和一种简单的方法,并就这两个方面进行了评估。
translated by 谷歌翻译
已知自然语言推断(NLI)模型从训练数据内的偏见和人工制品中学习,影响他们概括到其他看不见的数据集。现有的去偏置方法侧重于防止模型学习这些偏差,这可能导致限制模型和较低的性能。相反,我们调查教学模型如何将人类接近NLI任务,以便学习将更好地概括到以前看不见的特征。使用自然语言解释,我们监督模型的注意力,以鼓励更多地关注解释中存在的词语,显着提高模型性能。我们的实验表明,这种方法的分布式改进也伴随着分发的改进,监督模型从概括到其他NLI数据集的功能。该模型的分析表明,人类解释鼓励增加对重要词语的关注,在前提下的单词和较少关注标点符号和止扰言论的关注。
translated by 谷歌翻译
Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language. To shed light on the linguistic knowledge they capture, we study the representations produced by several recent pretrained contextualizers (variants of ELMo, the OpenAI transformer language model, and BERT) with a suite of seventeen diverse probing tasks. We find that linear models trained on top of frozen contextual representations are competitive with state-of-the-art task-specific models in many cases, but fail on tasks requiring fine-grained linguistic knowledge (e.g., conjunct identification). To investigate the transferability of contextual word representations, we quantify differences in the transferability of individual layers within contextualizers, especially between recurrent neural networks (RNNs) and transformers. For instance, higher layers of RNNs are more taskspecific, while transformer layers do not exhibit the same monotonic trend. In addition, to better understand what makes contextual word representations transferable, we compare language model pretraining with eleven supervised pretraining tasks. For any given task, pretraining on a closely related task yields better performance than language model pretraining (which is better on average) when the pretraining dataset is fixed. However, language model pretraining on more data gives the best results.
translated by 谷歌翻译